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Introduction Experiments
= Accelerated MRI expedites the acquisition process by subsampling the K-space. = Our model shows adaptiveness to E
Reconstruction methods are then used to recover an image from the sparse K-space different input images (see the 550
measurements. right figure). The final sampling 3;
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= Previous work took either a co-design approach to jointly optimize a sampler and a patterns in the fourth column —
reconstructor or a sequential sampling approach to adaptively generate customized contain visible directional structure
sampling patterns for each subject rather than using a fixed pattern for better that aligns with the K-space power
performance. spectrum. Rotated anatomical E
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= QOur proposed model successfully combines the advantages of sequential sampling and Images, such as these rotated E
co-design. knee images, were not included in =
Sequential Sampling the training set (or quantitatively x
No ! Yes evaluated test set).
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8 S Traditional Methods | | PG-MRI [3]| |DDQN-MRI [4] = Quantitative comparisons with the previous state-of-the-art = Visual comparisons with the previous state-of-the-art LOUPE [1] and a few other

baseline, LOUPE [1], under various sampling scenarios and common baselines [3], [5] under the 4x accelerated 1D line sampling scenario
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= Sequentially acquire the next best set of measurements based on intermediate information — -J- 1D 5
= Sampler-reconstructor co-design is achieved through end-to-end training 2T B 4x g
91.20 91.08 C
: > 91+ 90.89 940_184—/":—‘/"! B 8x §
Mask Masked  Zero-filled Reconstruction % AR SRS 90.95 907 o qg & wpr
k-space Reconstruction n » 90.66 90.73 é
90 89.52 7
Y ’
Step 0 ol 89.10
88.88 . w K-Space
89 88.73 88.67 88.82 ¥ O
o
88 1 1 1 1 ;
i JER N N ST e
Ste p 1 \/O &00 &Q/Q \‘QQ CD&Q,Q ©
l\'/(j ’)//% b(/ 2
= Sequential sampling provides significantly improvements upon a fixed » Gradient-based co-design is crucial for good performance. It allows us to
Step 2 sampling pattern. More sequential steps consistently lead to larger significantly outperform models that use fixed reconstructors, even those
. . ; g - : improvements. with the same proposed network architecture.
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