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Abstract

We consider solving ill-posed imaging inverse problems under a generic forward
model. Due to the ill-posedness of such problems, prior models that encourage
certain image-based structure are required to reduce the space of possible images
when solving for a solution. Traditional approaches utilize hand-crafted prior
models with parameters tuned through trial and error, which can be time-intensive
and prone to human bias. Learning-based approaches use image samples from
the ground-truth distribution of interest to learn a parameterized generative model
that can be subsequently used to constrain the inverse problem; however, in many
applications ground-truth images may be unavailable. In contrast, we propose to
either select or learn an image generation model from the noisy measurements
alone, without incorporating prior constraints on image structure. We first show
how, given a number of candidate models, the Evidence Lower Bound (ELBO)
of a variational distribution can be used to select an appropriate prior. Then, we
showcase how, in the absence of available priors, we are able to directly learn an
underlying generative model from a set of noisy measurements using a proxy for
the ELBO. We crucially assume that the ground-truth images share a common
structure by being drawn from the same underlying distribution. The learned model
leverages this structure in its architecture, which consists of a shared generator
with a compressed latent space, where each image posterior is learned variationally
in the latent space. This allows the model to learn global properties of the image
distribution without overfitting. We illustrate our framework on a variety of inverse
problems, ranging from denoising to a compressed sensing problem inspired by
black hole imaging.

1 Introduction

In imaging inverse problems, the goal is to recover a target clean image from corrupted measurements
where the measurements and image are related via some understood forward model: y = f(x) + η.
Here, y are our measurements, x is the ground-truth image, f is a forward model, and η is noise.
Such problems are ubiquitous across the natural sciences, including denoising [6], super-resolution
[7], compressed sensing [8, 10, 11], phase retrieval [12], and deconvolution [21]. When the problem
is ill-posed, there are many images that are consistent with our measurements. Thus, we require
structural assumptions, referred to as image priors, to reduce the space of possible solutions. In this
paper, we parameterize prior image distributions using an image generation model (IGM).

In order to define a prior via an IGM, it is necessary to have knowledge of the structure of the
underlying image distribution. However, there are many scientific imaging modalities (e.g., medical
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imaging, geophysical imaging, and astronomical imaging) where we do not have access to ground-
truth images. Collecting ground-truth images in these domains can be extremely invasive, time-
consuming, expensive, or even impossible. Moreover, while classical approaches utilize hand-crafted
image models [15, 23] to regularize inversion, hyperparameter tuning is imperative to success. In
practice, this results in choosing a regularizer based on trial and error and such approaches are heavily
prone to human bias [20]. If ground-truth images are available, then an IGM can be learned directly
[28, 34, 4], but this approach requires access to an abundance of clean data. Thus, developing a
principled criterion to select an IGM based on access to noisy measurements alone could significantly
reduce modelling time and avoid any imposed human bias. If such a criterion can be identified, a
natural follow-up question would be to use such a criterion to learn the underlying IGM from noisy
corrupted measurements alone.

In this work, we solve a collection of ill-posed image reconstruction tasks without access to an
explicit image prior. The key insight of our work is that knowledge of common structure across
independent problems is sufficient regularization alone. In particular, we first show how, given a
number of candidate IGMs, the Evidence Lower Bound (ELBO) of a variational distribution can be
used to select an image model that best explains the underlying true image. The motivation for our
approach lies in the fact that given measurements y and an IGM m, the ELBO provides a tractable
proxy for the IGM posterior distribution p(m|y). Then, we show how one can, in the absence of
available models, directly learn an IGM from a set of N noisy measurements y(i) = f(x(i)) + η(i)

to help solve the underlying inverse problem y 7→ x. An important assumption we make is that the
underlying images x(i) are drawn from the same distribution (unknown a-priori), and we show how
the learned model m is able to capture this common structure. Our contributions are as follows:

1. We mathematically and experimentally illustrate how a proxy for the ELBO provides a good
criterion for selecting an IGM in several inverse problems.

2. We solve inverse problems without a pre-defined IGM by directly learning it from an
independent set of corrupted measurements. In particular, we parameterize the IGM as
a deep generative network whose latent space is shared across measurements in order to
leverage similarities in the underlying truth images.

1.1 Background and Related Work

Model selection. Model selection techniques seek to choose models that best explain data by
balancing performance and model complexity. In supervised learning problems with sufficiently large
amounts of data, this can be achieved simply by evaluating the performance of different candidate
models using reserved test data [31]. However, in image reconstruction or other inverse problems
with limited data, one cannot afford to hold out data. In these cases, a more common way is to
conduct model selection based on probabilistic metrics. The simplest probabilistic metric used for
linear model selection is adjusted R2 [24]. It re-weights the goodness-of-fit by the number of linear
model parameters, so it helps reject high dimensional parameters that do not improve the data fitting
accuracy. Similar metrics in non-linear model selection are Bayesian Information Criterion (BIC) [29]
and Akaike Information Criterion (AIC) [1]. AIC and BIC compute different weighted summations
of a model’s log-likelihood and complexity, offering different trade offs between bias and variance to
identify the best model for a given dataset.

Learning IGMs. There are a few recent methods that learn IGMs from only noisy data. Regular-
ization by Artifact Removal (RARE) [22] learns data-driven priors from various forms of “artifacts"
(e.g. compressed sensing aliasing). RARE’s Artifact2Artifact scheme requires multiple independent
measurements of each image in a collection of images to train an IGM. However, this approach is
limited by the assumption that the expected value of multiple observations of a single image is the
ground-truth image. Techniques [5, 16] based on Generative Adversarial Networks (GANs) have
also been proposed to learn an IGM directly from noisy data. For instance, AmbientGAN [5] learns
to generate images whose measurements are indistinguishable from the true measurements. Although
the GAN based techniques can achieve impressive results, as we show in Section 3, they require
many independent observations to achieve this high performance.
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2 Approach

In this work, we propose to either select or learn an IGM from a collection of corrupted measurements
with underlying images that share a common image distribution. In particular, we first consider
selecting an IGM by choosing the model that approximately maximizes the model posterior by
using the ELBO as a principled proxy. Building upon this, we show that one can directly learn the
IGM from noisy measurements alone by parameterizing the IGM as a deep neural network with a
low-dimensional latent distribution. The IGM network weights are shared across latent posterior
distributions, capitalizing on the common structure shared across images.

2.1 Motivation for ELBO as a model selection criterion
Suppose we are given noisy measurements from a single image: y = f(x) + η. In order to
reconstruct the image x, we traditionally first require a prior, or IGM m, that best explains our data.
A natural approach would be to find or select the model m that maximizes the model posterior
distribution p(m|y) ∝ p(y|m)p(m). That is, conditioned on the noisy measurements, find the model
of highest likelihood. Unfortunately computing p(y|m) is intractable, but we show how it can be well
approximated using the Evidence Lower Bound (ELBO).

To motivate our discussion, we first consider estimating the conditional posterior p(x|y,m) by
learning the parameters θ of a variational distribution qθ(x). Observe that the definition of the
KL-divergence followed by an application of Bayes’ theorem gives

DKL(qθ(x) ∥ p(x|y,m)) := Ex∼qθ(x)[log qθ(x)− log p(x|y,m)]

= log p(y|m)− Ex∼qθ(x) [log p(y|x,m) + log p(x|m)− log qθ(x)]

The ELBO of a model m given measurements y is defined by

ELBO(m; y) := Ex∼qθ(x) [log p(y|x,m) + log p(x|m)− log qθ(x)] . (1)

Rearranging the above equation, we see that

log p(y|m) = DKL(qθ(x) ∥ p(x|y,m)) + ELBO(m; y) ⩾ ELBO(m; y)

by the non-negativity of the KL-divergence. This leads to a criterion to choose a model:

log p(m|y) ⩾ ELBO(m; y) + log p(m).

Note that if the variational distribution qθ(x) is a good approximation to the posterior p(x|y,m),
DKL ≈ 0 and log p(m|y) ≈ ELBO(m; y) + log p(m).

Each term in the ELBO objective encourages certain properties of our model. In particular, the first
term Ex∼qθ(x)[log p(y|x,m)] requires that our model m should lead to an estimate of image that
is consistent with our measurements y. The second term Ex∼qθ(x)[log p(x|m)] encourages images
sampled from qθ(x) to have high likelihood under our model m. The final term is the entropy term
Ex∼qθ(x)[− log qθ(x)], which encourages a model that leads to “fatter” minima that are less sensitive
to small changes in the estimated image.

ELBOProxy. Some common image priors are explicit, which allows for direct computation of
log p(x|m). In this case, we can optimize the ELBO defined in Equation 1 directly and then perform
model selection. However, an important class of IGMs that we are interested in are those given by
deep generative networks. Such IGMs are not probabilistic in the usual Bayesian interpretation of a
prior, but instead implicitly enforce structure in the data. A key characteristic of many generative
network architectures (e.g., VAEs and GANs) that we leverage is that they generate high-dimensional
images from low-dimensional latent representations. Bottlenecking helps the network learn global
characteristics of the underlying image distribution while also preventing overfitting to noise. How-
ever, this means that we can only compute log p(x|m) directly if we have an injective map [17].
This architectural requirement limits the expressivity of the network. Hence, we instead consider
a proxy of the ELBO that is especially helpful for deep generative networks. Suppose our image
generation model is of the form x = Gm(z) where Gm is a generative network and z is a latent vector.
Introducing a variational family for our latent representations z ∼ qϕ(z) and using log p(z|Gm) in
place of log p(x|Gm), we arrive at the following proxy of the ELBO:

ELBOProxy(Gm; y) := Ez∼qϕ(z) [log p(y|Gm(z)) + log p(z|Gm)− log qϕ(z)] . (2)

3
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Figure 1: We propose to learn a single IGM Gm from a set of noisy measurements {y(i)}Ni=1 to
reconstruct each underlying image x(i). This generator is shared across latent posteriors and learns
global properties of the underlying image distribution. We reconstruct each image by learning a
reconstruction posterior over the latent space of Gm, each parameterized by a variational family qϕ(i)

with parameters ϕ(i). The IGM parameters m and parameters ϕ(i) are found by solving Equation 3.

Variational family. In practice, there are a number of choices to parameterize the variational
families qθ(x) and qϕ(z). One could, for example, utilize a Gaussian parameterization which would
entail learning a mean and covariance (µ,Σ). Another particularly flexible family of functions are
Normalizing Flows [27, 26, 9], which are generative models capable of learning an invertible mapping
between a simple latent distribution to a more complicated distribution of interest [32]. We explore
both options in this work, and discuss these ideas further in the subsequent sections.

Toy example. In order to illustrate the use of the ELBOProxy as a model selection criterion, we
conduct the following experiment that asks whether the ELBOProxy can identify the best model
from a given set of plausible image models. For this experiment, we use the MNIST dataset [19] and
consider two inverse problems: denoising and phase retrieval. We train a generative model Gmc on
each class c ∈ {0, 1, 2, . . . , 9}. Hence, Gmc is learned to generate images from class c via Gmc(z)
where z ∼ N (0, I). Then, given noisy measurements yc from an image from class c, we ask whether
the generative model Gmc from the appropriate class would achieve the best ELBOProxy. For
denoising, our measurements are yc = xc + ηc where ηc ∼ N (0, σ2I) and σ =

√
0.5. For phase

retrieval, yc = |F(xc)|+ ηc where F is the Fourier transform and ηc ∼ N (0, σ2I) with σ =
√
0.05.

We construct 10× 10 arrays for each problem, where in the i-th row and j-th column, we compute
the −ELBOProxy obtained by using model Gmj−1 to reconstruct images from class i − 1. We
calculate ELBOProxy(Gmc

; yc) by parameterizing qϕc
with a Normalizing Flow and optimizing

network weights ϕc. Results from the first 5 classes are shown in Fig. 2 and the full arrays are shown
in the Appendix. We note that all of the correct models are chosen in phase retrieval and 3 out of 5
models are chosen correctly in denoising, although the difference in value is small between the true
class and the incorrectly selected class. We also note some interesting cases where the ELBOProxy
values are similar for certain cases, such as when recovering the 3 or 4 image. For example, when
denoising the 4 image, both Gm4 and Gm9 achieve comparable ELBOProxy values. By carefully
inspecting the noisy image of the 4 one can see that both models are reasonable given the structure of
the noise.

2.2 Learning the image generation model for inverse problems

As the previous section illustrates, the ELBOProxy provides a good criterion for choosing an
appropriate IGM from noisy measurements. However, there are a number of challenging imaging
inverse problems where we do not have access to a set of potential IGMs that contain an accurate
image model. Here, we consider the task of learning the IGM directly from the noisy data. We
consider the setting where we have access to a collection of N measurements y(i) = f(x(i)) + η(i)

for i ∈ [N ] and each x(i) are drawn from the same image distribution of interest. For example, we
may be imaging the same object from various viewpoints, but our observations are corrupted and
noisy. The key assumption we make is that similar structure exists in all underlying images measured,
allowing us to learn the structure by finding a low-dimensional representation that can produce
all noisy data observed. Relative to typical generative modelling-based approaches or supervised
learning approaches, we assume we have very few examples N , on the order of only 10’s of examples.

4



D
en

oi
si

ng
Ph

as
e 

R
et

rie
va

l

-ELBOProxy confusion rows for each IGM (  )0 1 2 3 4 5 6 7 8 9

IGM class

high
low

-ELBOProxy confusion rows for each IGM (  )

high
low

0 1 2 3 4 5 6 7 8𝑥 𝑦 9
IGM class

De
no

isi
ng

Ph
as

e 
Re

tr
ie

va
l

Figure 2: We consider two inverse problems: denoising and phase retrieval. Left: the two leftmost
columns correspond to the ground truth image xc and the noisy measurements yc. Center: we show
the means of the variational distributions given by the IGM trained in a particular class. Interesting
examples from a model selection perspective are highlighted in red. Right: each row of the array
corresponds to the −ELBOProxy achieved by each model in reconstructing the images. Here, lower
is better. Boxes highlighted in green correspond to the best −ELBOProxy values in each row.

Truth Meas. Mean Std Mean Std Mean Std

Increasing number of noisy samples (N)
IGM Trained with Clean 

Images

Mean Std

Figure 3: Denoising improves with more noisy MNIST observations. We demonstrate our method
of learning the IGM to perform denoising for increasing number of noisy images (4, 35, and 75 images
from left to right). In each panel, we include the ground truth, noisy measurements, mean of the
posterior, and standard deviation of the posterior. We also include the reconstructions using an IGM
trained on the full clean MNIST 8’s class. We observe that the mean reconstructions and standard
deviations from our low-data IGMs become more similar to the full-data IGM with increasing data.

Learning approach. We would like our image generation model to capture shared properties
of the N images underlying the set of measurements. Each corruption, however, could induce its
own complicated image posteriors. Thus, we propose to find a shared generator Gm with weights
m that can be used to reconstruct the full posterior of each image x(i) from its corresponding
noisy observation y(i). This approach is illustrated in Fig. 1. More explicitly, given a set of noisy
measurements {y(i)}Ni=1, we optimize the ELBOProxy from Equation 2 to learn a generator Gm

that leads to an accurate set of variational distributions {qϕ(i)}Ni=1:

max
m,{ϕ(i)}

1

N

N∑
i=1

Ez∼q
ϕ(i) (z)

[
log p(y(i)|Gm(z)) + log p(z|Gm)− log qϕ(i)(z)

]
+ log p(Gm). (3)

The expectation in this objective is approximated via Monte Carlo sampling. In terms of choices for
log p(Gm), we can add additional regularization to promote particular structures, such as smoothness.
Here, we consider having sparse neural network weights as a form of regularization and use dropout
during training to represent log p(Gm)[30].
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Once a generator Gm and variational parameters ϕ(i) have been learned, we can solve the inverse
problem by providing estimates of x(i) via sampling ẑ ∼ qϕ(i)(z(i)) and outputting Gm(ẑ) ≈ x(i)

or computing an average 1
T

∑T
t=1 Gm(ẑt) ≈ x(i). Producing samples can help visualize the range

of uncertainty under the current image model Gm, while the expected value of the distribution
empirically provides clearer estimates with better metrics in terms of PSNR or MSE. We report PSNR
outputs in our subsequent experiments and also visualize the standard deviation of our reconstructions.

Toy Example. To illustrate learning the IGM, we consider using the ELBOProxy to learn the IGM
directly from a set of noisy images. The noisy images {y(i)}Ni=1 are defined by y(i) = x(i) + η(i)

where {x(i)}Ni=1 are from a single MNIST class c and η(i) ∼ N(0, σ2I) where σ = 0.5. Using
only these noisy images, we learn the shared generator Gm as well as unique variational posterior
distributions that each represents a single denoised reconstruction. We use multivariate Gaussian
distributions to parameterize the variational posteriors and a Deep Decoder [13] as the generator
with dropout of 10−4. Results from this experiment are shown in Fig. 3. Note that as the number of
independent noisy measurements increases, the IGM becomes a stronger prior that better captures the
true underlying distribution, resulting in higher fidelity reconstructions. In addition, as the number of
images increases, the uncertainty focuses on the salient features of the image rather than on the noise.

3 Results
We now consider solving various inverse problems by learning an IGM directly from noisy measure-
ments via the framework described in 2.2. For each of these experiments, we use a multivariate Gaus-
sian distribution to represent each of the posterior distributions z(i) ∼ qϕ(i)(z(i)) and a Deep Decoder
as the IGM with a dropout of 10−4 for the rest of the experiments. The multivariate Gaussian distri-
bution is parameterized by means {µ(i)}Ni=1 and covariance matrices {Λ(i) = L(i)L(i)T + εI}Ni=1,
where εI with ε = 10−3 is added to the covariance matrix to help with stability of the optimiza-
tion. We choose to parameterize the posterior using simple Gaussian distributions due to memory
constraints. Note that we do not employ early stopping. For more details, please see the Appendix.
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Figure 4: Denoising 75 images of a celebrity. We demonstrate our method described in 2.2 using 75
noisy images of a celebrity. Here we show the ground truth (top), noisy measurements (middle), and
mean reconstruction (bottom) for a subset of the 75 different noisy images. Our reconstructions are
much less noisy, exhibiting sharper features that are hard to discern in the noisy images. Note that no
predefined prior/regularizer was used in denoising.

Denoising: We show results on denoising noisy images of 8’s from the MNIST dataset in Fig 3 and
denoising noisy images from a single face from the PubFig [18] dataset in Fig. 4. The measurements
for both are defined by y = x+ η where η ∼ N (0, σ2I) with an SNR of ∼0.5 for the MNIST digits
and an SNR of ∼54 for the faces. Our method is able to remove much of the added noise and recovers
small scale features, even with only 10’s of observations. Note that the learned IGM improves as
the number of independent observations increases, as shown in Fig. 3. Our reconstructions also
substantially outperform the baseline methods AmbientGAN [5], Deep Image Prior (DIP) [33], and
regularized maximum likelihood using total variation (TV-RML), as shown in Fig. 7. Unlike DIP, our
method does not seem to overfit and does not require early stopping. Our method does not exhibit
noisy artifacts like those seen in AmbientGAN results.
Compressed sensing: We consider noisy measurements from the following problem arising from
astronomical imaging of black holes with the Event Horizon Telescope (EHT): suppose we are given
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Figure 5: Visualization of the intrinsic resolution of the EHT compressed sensing measurements.
The EHT measures sparse spatial frequencies of the image (i.e., components of the image’s Fouier
transform). In order to generate the ground truth image (c), all frequencies in the entire domain of
(a) must be used. Restricting spatial frequencies to the ones in (a) and (b)’s green circle generates
the target (d). The EHT samples a subset of this region, indicated by the sparse black samples in (b).
Naively recovering an image using only these frequencies results in the dirty image (e), which is
computed by x̂ = AHy. The 2D spatial Fourier frequency coverage represented with (u, v) positions
is referred to as the UV coverage.
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Figure 6: Compressed sensing with a video of a black hole. We demonstrate our method described
in 2.2 using 60 images from an evolving black hole target. Left: Here we show the ground-truth,
target, and mean reconstruction, respectively. Additionally, we show the unwrapped space × time
image, which is taken along the white ring illustrated in the T=1 ground-truth image. The bright-spot’s
temporal trajectory of our reconstruction matches that of the truth and target. Right: We compare our
method to various baselines methods. Our results are much sharper and exhibit less artifacts than
AmbientGAN and TV-RML with weight λ.

access to measurements of the form y = Ax + η, η ∼ N (0, σ2I) where A ∈ Cp×n is a low-rank
compressed sensing matrix arising from interferometric telescope measurements. This problem is
highly ill-posed and requires the use of priors or regularizers to recover a reasonable image [2].
Moreover, it is impossible to acquire ground-truth images of black holes, so any hand-designed prior
will exhibit human bias. However, we can assume that the source does not change much day to day,
which matches the assumptions of our approach and motivates the use of an IGM.

We show results on 60 frames from a video of a simulated evolving black hole target [25, 3] with an
SNR of ∼7 in Fig. 6. Our reference target image is the ground-truth filtered with a low pass filter that
represents the maximum resolution intrinsic to the Event Horizon Telescope array, which is visualized
and explained in Fig. 5. Our method is not only able to reconstruct the large scale features of the
ground-truth image without any aliasing artifacts, but also achieve some level of super-resolution.
Our reconstructions also achieve higher super-resolution as compared to our baselines in Fig. 6 and
do not exhibit artifacts evident in the AmbientGAN and TV-RML baselines. We additionally note
that the reconstructions from DIP are strong in this case, which is partially due to the fact that such
networks are not prone to overfitting in compressed sensing problems [14].

Phase retrieval: Here we demonstrate a limitation of our approach with an example where our
method obtains sub-optimal performance. In particular, we consider the non-linear inverse problem
of phase retrieval. Our measurements are described by y(i) = |F(x(i))| + η(i) where F is the
Fourier transform and η(i) ∼ N (0, σ2I). Since each measurement is the magnitude of the Fourier
transform, possible reconstructed images include all spatial shifts. Due to the severe ill-posedness
of the problem, representing this complicated posterior that includes all spatial shifts is challenging.
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Figure 7: Denoising baseline comparisons. We compare to various baselines (AmbientGAN, Deep
Image Prior (DIP), and regularized maximum likelihood using TV (TV-RML) with weight λ, and
we report the average PSNR across all 75 reconstructions. We show both early stopping and full
training results using DIP. Our method exhibits substantially higher PSNR and less noise than all
other baselines while maintaining distinct features that are smoothed out by DIP.

Truth Mean Std Sampleslog 𝑦

Figure 8: Phase retrieval from MNIST 8’s. We demonstrate our method described in 2.2 to perform
phase retrieval on 75 images. Here we show the target image, the log magnitude of the Fourier
transform, mean of the posterior, standard deviation of the posterior, and samples from the posterior.
Note that the posterior samples exhibit diversity even with a simple Gaussian latent distribution.

Thus, we incorporate an envelope as the final layer of Gm to encourage the reconstruction to be
centered. Nonetheless, multiple shifts are still possible within this enveloped region.

We show results from 75 noisy phase retrieval measurements from the MNIST 8’s class with an SNR
of ∼0.04 in Fig. 8. Our reconstructions have features similar to the digit 8, but contain significant
artifacts. These artifacts are due to the fact that a highly multi-modal distribution is being represented
by a unimodal Gaussian variational distribution. In denoising, increasing the number of measurements
N improved the IGM; however, this shift ambiguity will remain even if we increase the number
of available measurements. This problem would benefit from a translation-invariant generator Gm,
which would simplify the complexity of the posterior distribution. We save this for future work.

3.1 Generalization to new data and forward models

We consider generalizing to new measurements given an IGM Gm learned using the methods
described in Section 2.2. These measurements could be from the same forward model (e.g., the IGM
was trained with noisy MNIST digits, and we want to use it to denoise an unseen MNIST digit) or
from a different forward model (e.g., the IGM was trained with noisy MNIST digits, and we want to
use it to perform compressed sensing on an MNIST digit), but the measurements are all from the
same underlying ground-truth image distribution that the IGM was originally trained with. To solve
the new inverse problem, we learn the latent posterior z ∼ qϕ(z) given fixed weights m of the IGM
Gm and our measurement y using Eq. 2. Due to the additional complexity in generalizing to a new
image and forward model, we parameterize qϕ with a Normalizing Flow model. We show results in
Fig. 9 showcasing the generalization performance of an IGM pre-trained on 75 noisy images to 1)
novel images under the same forward model and 2) novel images under a different forward model.
Our method is able to reconstruct primary features of the face in both generalization tests. This
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Figure 9: Generalization to novel measurements. We show results using an IGM trained on 75
noisy images to solve inverse problems on novel measurements/images. These ground-truth images
were not used during training. We perform denoising on the left and compressed sensing on the right.
Note that when performing compressed sensing, there are two sources of novelty: the underlying
ground-truth image and the forward model.

demonstrates that the IGM avoids overfitting to specific images and measurements, and is able to
learn generalizable properties of the underlying data distribution even from few examples.

4 Conclusion
In this work, we demonstrated how one can solve ill-posed image reconstruction problems without
pre-defined priors by jointly learning a shared low-dimensional structure of the ground-truth images
from corrupted measurements alone. We first demonstrated that, given a number of candidate IGMs,
the ELBO of a variational distribution can be used to select the best model. By leveraging common
structure present across the underlying ground-truth images, we then showed that one can directly
learn an IGM from a set of corrupted measurements by searching for models that maximize a proxy
of the ELBO. We demonstrated that our approach learns global properties of the underlying image
distribution and can successfully solve a diverse set of inverse problems with significantly fewer
examples than generative model-based approaches. Overall, our work showcases the possibilities of
solving inverse problems in a “prior-free” fashion, free from human bias traditionally encountered
in ill-posed image reconstruction. Moreover, we believe our approach could aid in automatically
discovering novel structure from scientific measurements without access to clean data, leading to
potentially new avenues for scientific discovery.

Broader Impacts. We show that the ELBO can be used to perform model selection. However,
this does not guarantee that the selected model is a good enough IGM for accurate inverse image
reconstruction. Nonetheless, our approach can improve our understanding of fundamental science to
see things that were previously invisible.
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Kathrin Baczko, David Ball, Mislav Baloković, John Barrett, Dan Bintley, et al. First m87 event
horizon telescope results. v. physical origin of the asymmetric ring. The Astrophysical Journal
Letters, 875(1):L5, 2019. (Cited on 7)

[4] Ashish Bora, Ajil Jalal, Eric Price, and Alexandros Dimakis. Compressed sensing using
generative models. International Conference on Machine Learning (ICML), 2017. (Cited on 2)

[5] Ashish Bora, Eric Price, and Alexandros G Dimakis. Ambientgan: Generative models from
lossy measurements. In International conference on learning representations, 2018. (Cited on
2, 6)

9



[6] Harold C. Burger, Christian J. Schuler, and Stefan Harmeling. Image denoising: Can plain
neural networks compete with bm3d? IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012. (Cited on 1)

[7] Emmanuel J. Candès and Carlos Fernandez-Granda. Towards a mathematical theory of super-
resolution. Communications on Pure and Applied Mathematics, 67(6):906–956, 2013. (Cited
on 1)

[8] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery from
incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics,
59(8):1207–1223, 2006. (Cited on 1)

[9] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
2017. (Cited on 4)

[10] David Donoho. For most large underdetermined systems of linear equations the minimal l1-
norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics,
59(6), 2006. (Cited on 1)

[11] David Donoho, Michael Lustig, and John M. Pauly. Sparse mri: The application of compressed
sensing for rapid mr imaging. Magnetic Resonance in Medicine, 58(6):1182–1195, 2007. (Cited
on 1)

[12] Albert Fannjiang and Thomas Strohmer. The numerics of phase retrieval. Acta Numerica,
29:125 – 228, 2020. (Cited on 1)

[13] Reinhard Heckel and Paul Hand. Deep decoder: Concise image representations from untrained
non-convolutional networks. International Conference on Learning Representations (ICLR),
2019. (Cited on 6)

[14] Reinhard Heckel and Mahdi Soltanolkotabi. Compressive sensing with un-trained neural
networks: Gradient descent finds the smoothest approximation. International Conference on
Machine Learning, 2020. (Cited on 7)

[15] Leonid I.Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D: Nonlinear Phenomena, 60:259–268, 1992. (Cited on 2)

[16] Maya Kabkab, Pouya Samangouei, and Rama Chellappa. Task-aware compressed sensing
with generative adversarial networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018. (Cited on 2)

[17] Konik Kothari, AmirEhsan Khorashadizadeh, Maarten de Hoop, and Ivan Dokmanić. Trumpets:
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