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Abstract—We consider solving ill-posed imaging inverse
problems without access to an image prior or ground-
truth examples. An overarching challenge in these inverse
problems is that an infinite number of images, including
many that are implausible, are consistent with the observed
measurements. Thus, image priors are required to reduce
the space of possible solutions to more desireable recon-
structions. However, in many applications it is difficult
or potentially impossible to obtain example images to
construct an image prior. Hence inaccurate priors are often
used, which inevitably result in biased solutions. Rather
than solving an inverse problem using priors that encode
the spatial structure of any one image, we propose to solve
a set of inverse problems jointly by incorporating prior
constraints on the collective structure of the underlying
images. The key assumption of our work is that the
underlying images we aim to reconstruct share common,
low-dimensional structure. We show that such a set of
inverse problems can be solved simultaneously without the
use of a spatial image prior by instead inferring a shared
image generator with a low-dimensional latent space. The
parameters of the generator and latent embeddings are
found by maximizing a proxy for the Evidence Lower
Bound (ELBO). Once identified, the generator and latent
embeddings can be combined to provide reconstructed
images for each inverse problem. The framework we
propose can handle general forward model corruptions,
and we show that measurements derived from only a small
number of ground-truth images (⩽ 150) are sufficient for
“prior-free” image reconstruction. We demonstrate our
approach on a variety of convex and non-convex inverse
problems, ranging from denoising, phase retrieval, and
black hole video reconstruction.

I. INTRODUCTION

In imaging inverse problems, the goal is to recover
the underlying image from corrupted measurements,
where the measurements and image are related via an
understood forward model: y = f(x) + η. Here, y
are measurements, x is the underlying image, f is a
known forward model, and η is noise. Such problems
are ubiquitous and include denoising [6, 17], super-
resolution [7], compressed sensing [8, 16], phase re-
trieval [18], and deconvolution [32]. Due to corruption
by the forward model and noise, these problems are
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often ill-posed: there are many images that are consistent
with the observed measurements, including ones that are
implausible.

To combat the ill-posedness in imaging problems,
solving for an image traditionally requires imposing
additional structural assumptions to reduce the space of
possible solutions. We encode these assumptions in an
image generation model (IGM), whose goal is to capture
the desired properties of an image’s spatial structure.
IGMs are general, as they can encompass probabilistic
spatial-domain priors (e.g., that encourage smoothness
or sparsity), but also deep image generators that are
not necessarily probabilistic but are trained to primarily
sample a certain class of images.

In order to define an IGM, it is necessary to have
knowledge of the underlying image’s structure. If images
similar to the underlying image are available, then an
IGM can be learned directly [41, 52, 4]. However, an
abundance of clean images is not available for many
scientific imaging modalities (e.g., geophysical imaging
and astronomical imaging). Collecting images in these
domains can be extremely invasive, time-consuming,
expensive, or even impossible. For instance, how should
we define an IGM for black hole imaging without having
ever seen a direct image of a black hole or knowing what
one should look like? Moreover, classical approaches
that utilize hand-crafted IGMs, such as total variation
[23] or sparsity in a wavelet basis [34], are prone to
human bias [31].

In this work, we show how one can solve a set
of ill-posed image reconstruction tasks without prior
information about an image’s spatial structure. The key
insight of our work is that knowledge of common struc-
ture across multiple images is sufficient regularization
alone. In particular, we suppose we have access to a
collection of noisy measurements {y(i)}Ni=1 which are
observed through (potentially different) forward models
y(i) := f (i)(x(i))+η(i). The core assumption we make is
that the underlying images {x(i)}Ni=1 are drawn from the
same distribution (unknown a priori) and share common,
low-dimensional structure. Thus, our “prior” is not at the
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spatial-level, but rather exploits thecollective structure
of the underlying images. This assumption is satis�ed in
a number of applications where there is not access to an
abundance of clean images. For instance, although we
might not know what a black hole looks like, we might
expect it to be similar in appearance over time. We show
that under this assumption, the image reconstruction
posteriorsp(xjy( i ) ) can be learned jointly from a small
number of examplesf y( i ) gN

i =1 due to the common,
low-dimensional structure of the collectionf x ( i ) gN

i =1 .
Speci�cally, our main result is that one can capitalize on
this common structure by jointly solving for 1) a shared
image generatorG� and 2) N low-dimensional latent
distributions q� ( i ) , such that the distribution induced
by the push-forward ofq� ( i ) throughG� approximately
captures the image reconstruction posteriorp(xjy( i ) ) for
each measurement examplei 2 [N ].

A. Our Contributions

We outline the main contributions of our work, which
is an extension to our prior work presented in [19]:

1) We solve a collection of ill-posed inverse problems
without prior knowledge of an image's spatial struc-
ture by exploiting the common, low-dimensional
structure shared across images. This common struc-
ture is exploited in inferring a shared IGM with a
low-dimensional latent space.

2) To infer this IGM, we de�ne a loss inspired by
the evidence lower bound (ELBO). We motivate
this loss by showing how it aids in “prior-free”
image reconstruction by helping select one IGM
from a collection of candidate IGMs using a single
measurement example.

3) We apply our approach to convex and non-convex
inverse problems, such as denoising, black hole
compressed sensing, and phase retrieval. We estab-
lish that we can solve inverse problems without
spatial-level priors and demonstrate good perfor-
mance with only a small number of independent
measurement examples (e.g.,6 150).

4) We theoretically analyze the inferred IGM in linear
inverse problems under a linear image model to
show that in this setting the inferred IGM performs
dimensionality reduction akin to PCA on the col-
lection of measurements.

II. BACKGROUND AND RELATED WORK

We now discuss related literature in model selection
and learning-based IGMs. In order to highlight our key
contributions, we emphasize the following assumptions
in our framework:

1) We do not have access to a set of images from the
same distribution as the underlying images.

2) We only have access to a collection of measurement
examples, where each example comes from a dif-
ferent underlying image. The number of examples
N is small, e.g.,N 6 150.

3) For each underlying imagex ( i ) we wish to recon-
struct, we only have access to a single measurement
exampley( i ) = f ( i ) (x ( i ) ) + � ( i ) . That is, we do not
have multiple observations of the same underlying
image. Note eachf ( i ) can be potentially different.

A. Model selection

Model selection techniques seek to choose a model
that best explains data by balancing performance and
model complexity. In supervised learning problems with
suf�ciently large amounts of data, this can be achieved
simply by evaluating the performance of different can-
didate models using reserved test data [46]. However,
in image reconstruction or other inverse problems with
limited data, one cannot afford to hold out data. In
these cases, model selection is commonly conducted
using probabilistic metrics. The simplest probabilistic
metric used for linear model selection is adjusted R2

[37]. It re-weights the goodness-of-�t by the number of
linear model parameters, helping reject high-dimensional
parameters that do not improve the data �tting accu-
racy. Similar metrics in nonlinear model selection are
Bayesian Information Criterion (BIC) [42] and Akaike
Information Criterion (AIC) [1]. AIC and BIC com-
pute different weighted summations of a model's log-
likelihood and complexity, offering different trade offs
between bias and variance to identify the best model for
a given dataset.

In our work, we consider the use of the ELBO as a
model selection criterion. In [9, 10], the use of the ELBO
as a model selection criterion is theoretically analyzed
and rates of convergence for variational posterior estima-
tion are shown. Additionally, [48] proposes a generalized
class of evidence lower bounds leveraging an extension
of the evidence score. In [47], the ELBO is used for
model selection to select a few, discrete parameters
modeling a physical system (e.g., parameters that govern
the orbit of an exoplanet). A signi�cant difference in our
context, however, is that we use the ELBO as a model
selection criterion in ahigh-dimensionalimaging context
and we optimize the ELBO over a continuous space of
possible parameters.

B. Learning IGMs

With access to a large corpus of example images
it is possible to directly learn an IGM to help solve
inverse problems. Seminal work along these lines uti-
lizing generative networks showcased that a pre-trained
generative adversarial network (GAN) can be used as
an IGM in the problem of compressed sensing [4]. To
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solve the inverse problem, the GAN was used to con-
strain the search space for inversion. This approach was
shown to outperform sparsity-based techniques with 5-
10x fewer measurements. Since then, this idea has been
expanded to other inverse problems, including denoising
[22], super-resolution [36], magnetic resonance imaging
(MRI) [2, 44], and phase retrieval [20, 43]. However, the
biggest downside to this approach is the requirement of a
large dataset of example images similar to the underlying
image, which is often dif�cult or impossible to obtain in
practice. Hence we consider approaches that are able to
directly solve inverse problems without example images.

Recently, methods that learn IGMs from only noisy
measurements have been proposed. The main four dis-
tinctions between our work and these methods are that
these works either: 1) require multiple independent
observations of thesame underlying image, 2) can
only be applied to certain inverse problems, 3) require
signi�cantly more observations (either through more
observations of each underlying image or by observ-
ing more underlying images), or 4) require signi�cant
hyperparameter tuning based on knowledge of example
images.

Noise2Noise (N2N)[30] learns to denoise images by
training on a collection of noisy, independent observa-
tions of thesameimage. To do so, N2N learns a neural
network� � whose goal is to map between noisy images
y and denoised imagesx. Since it has no denoised
image examples to supervise training, it instead employs
a loss that maps between noisy examples of the same
underlying image. This objective is as follows:

arg min
�

NX

i =1

Ey ( i )
1 �Y 1

Ey ( i )
2 �Y 2

[L (� � (y( i )
1 ); y( i )

2 )]; (1)

wherey( i )
j corresponds to a noisy observation of thei -

th underlying imagex ( i ) , and Yj is a distribution of
noisy images whereEy �Y j [y] = x. This N2N objective
requires at least two observations of the same image and
is limited by the assumption that the expected value of
multiple observations of a single image is the underlying
image. Thus, N2N is only applicable to denoising prob-
lems where the forward model is the identify matrix with
independent noise on each pixel. Additionally, in practice
N2N requires thousands of underlying images (i.e.,N )
to perform well. Thus, N2N's main distinctions with our
work are distinctions 1), 2), and 3).

Regularization by Artifact Removal (RARE) [33]
generalizes N2N to perform image reconstruction from
measurements under linear forward models. That is, the
objective in Equation (1) is modi�ed to include a pseudo-
inverse. Nonetheless, multiple observations of the same
underlying image are required, such thatEy �Y [Ayy] = x
for the pseudo-inverse matrixAy. Thus, RARE suffers

from the same limiting distinctions as N2N (i.e., 1), 2),
and 3)).
Noise2Void [27] and Noise2Self[3] assume that the
image can be partitioned such that the measurement
noise in one subset of the partition is independent
conditioned on the measurements in the other subset.
This is true for denoising, but not applicable to general
forward models. For example, in black hole and MRI
compressed sensing, it is not true that the measurement
noise can be independently partitioned since each mea-
surement is a linear combination of all pixels. While
this makes Noise2Void and Noise2Self more restrictive
in the corruptions they can handle compared to RARE,
they also don't require multiple observations of the same
underlying image. Hence the main differences between
these works and our own are distinctions 2) and 3).
AmbientGAN [5] and other similar approaches based
on GANs [25] and VAEs [38, 35] have been proposed
to learn an IGM directly from noisy measurements.
For instance, AmbientGAN aims to learn a generator
whose images lead to simulated measurements that are
indistinguishable from the observed measurements; this
generator can subsequently be used as a prior to solve
inverse problems. However, AmbientGAN requires many
measurement examples (on the order of 10,000) to
produce a high quality generator. We corroborate this
with experiments in Section IV to show that they require
many independent observations and/or �ne tuning of
learning parameters to achieve good performance. Thus,
the main distinctions between AmbientGAN and our
work are 3) and 4).
Deep Image Prior (DIP) [51] uses a convolutional
neural network as an implicit “prior”. DIP has shown
strong performance across a variety of inverse problems
to perform image reconstruction without explicit prob-
abilistic priors. However, it is prone to over�tting and
requires selecting a speci�c stopping criterion. While
this works well when example images exist, selecting
this stopping condition from noisy measurements alone
introduces signi�cant human bias that can negatively
impact results. Thus, the main distinction between DIP
and our work is 4).

III. A PPROACH

In this work, we propose to solve a set of inverse
problems without prior access to an IGM by assuming
that the set of underlying images have common, low-
dimensional structure. We motivate the use of optimizing
the ELBO to infer an IGM by showing that it is a
good criterion for generative modelselection in Sec-
tion III-A. Then, by optimizing the ELBO, we show
in Section III-B that one can directlyinfer an IGM
from corrupted measurements alone by parameterizing
the image model as a deep generative network with a
low-dimensional latent distribution. The IGM network
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Fig. 1: We propose to solve a collection ofN ill-posed inverse problems by exploiting the common, low-dimensional structure
of the underlying images. Given a set ofN measurement examplesf y( i ) gN

i =1 from N different underlying images, we propose
to model each image posterior as the output of a shared IGM with a low-dimensional latent space. In particular, each posterior is
approximated byG� ]q� ( i ) , the push-forward ofq� ( i ) throughG� , whereG� is the shared, common generator to allN examples
andq� ( i ) is a low-dimensional, variational distribution particular to thei -th example. The inferred parameters,� andf � ( i ) gN

i =1 ,
are colored in blue and the loss is� ELBOProxy , which is given by Equation (4).

weights are shared across all images, capitalizing on
the common structure present in the data, while the
parameters of each latent distribution are learned jointly
with the generator to model the image posteriors for each
measurement example.

A. Motivation for ELBO as a model selection criterion

In order to accuratelyinfer an IGM, we motivate
the use of the ELBO as a loss by showing that it
provides a principled criterion forselecting an IGM
to use as a prior model. Suppose we are given noisy
measurements from a single image:y = f (x) + � .
In order to reconstruct the imagex, we traditionally
�rst require an IGM G that captures the distribution
x was sampled from. A natural approach would be to
�nd or select the modelG that maximizes the model
posterior distributionp(Gjy) / p(yjG)p(G): That is,
conditioned on the noisy measurements, �nd the IGM
of highest likelihood. Unfortunately computingp(yjG)
is intractable, as it requires marginalizing and integrating
over all x encompassed by the IGMG. However, we
show that this quantity can be well approximated using
the ELBO.

To motivate our discussion, we �rst consider estimat-
ing the conditional posteriorp(xjy; G) by learning the
parameters� of a variational distributionh� (x). Observe
that the de�nition of the KL-divergence followed by an
application of Bayes' theorem gives

DKL (h� (x) k p(xjy; G)) := Ex � h � (x )

�
log

h� (x)
p(xjy; G)

�

= Ex � h � (x )

�
log

h� (x)p(yjG)
p(yjx; G)p(xjG)

�

= � Ex � h � (x ) [logp(yjx; G) + log p(xjG) � logh� (x)]

+ log p(yjG):

The ELBO of an IGMG given measurementsy under
variational distributionh� is de�ned by

ELBO( G; h� ; y) := Ex � h � (x ) [logp(yjx; G)

+ log p(xjG) � logh� (x)]: (2)

Rearranging the previous equation, we see that by the
non-negativity of the KL-divergence that

logp(yjG) = DKL (h� (x) k p(xjy; G))

+ ELBO( G; h� ; y)

> ELBO( G; h� ; y):

Thus, we can lower bound the model posterior as

logp(Gjy) > ELBO( G; h� ; y) + log p(G) � logp(y):

Note that logp(y) is independent of the parameters
of interest, � . If the variational distributionh� (x)
is a good approximation to the posteriorp(xjy; G),
DKL � 0. Thus, maximizing logp(Gjy) with re-
spect toG is approximately equivalent to maximizing
ELBO( G; h� ; y) + log p(G).

Each term in the ELBO objective encourages cer-
tain properties of the IGMG. In particular, the �rst
term in the ELBO, Ex � h � (x ) [logp(yjx; G)], requires
that G should lead to an image estimate that is con-
sistent with our measurementsy. The second term,
Ex � h � (x ) [logp(xjG)], encourages images sampled from
h� (x) to have high likelihood under our modelG. The
�nal term is the entropy term,Ex � h � (x ) [� logh� (x)],
which encourages aG that leads to “fatter” minima that
are less sensitive to small changes in likely imagesx
underG.

1) ELBOProxy: Some IGMs are explicit, which al-
lows for direct computation oflogp(xjG). For example,
if our IGM models x as isotropic Gaussian with vari-
ance � , then � logp(xjG) / � � 1kxk2

2. In this case,
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we can optimize the ELBO de�ned in Equation (2)
directly and then perform model selection. However, an
important class of IGMs that we are interested in are
those given by deep generative networks. Such IGMs
are not probabilistic in the usual Bayesian interpretation
of a prior, but instead implicitly enforce structure in the
data. A key characteristic of many generative network
architectures (e.g., VAEs and GANs) that we leverage is
that they generate high-dimensional images from low-
dimensional latent representations. Bottlenecking helps
the network learn global characteristics of the underlying
image distribution while also respecting the low intrinsic
dimensionality of natural images. However, this means
that we can only computelogp(xjG) directly if we have
an injective map [26]. This architectural requirement
limits the expressivity of the network.

We instead consider a proxy of the ELBO that is
especially helpful for deep generative networks. That is,
suppose our IGM is of the formx = G(z). Introduc-
ing a variational family for our latent representations
z � q� (z) and choosing a latent prior distribution
logpZ (zjG), we arrive at the following proxy of the
ELBO:

ELBOProxy( G; q� ; y) := Ez� q� (z) [logp(yjG(z))

+ log pZ (zjG) � logq� (z)]: (3)

In our experiments, we chosepZ (zjG) to be an isotropic
Gaussian prior. This is a common choice in many
generative modeling frameworks and has shown to be
a good choice of prior in the latent space.

To motivate this proxy, it is instructive to consider
the case where our variational distributionh� := G]q�

is the push-forward of a latent distributionq� through
an injective or invertible functionG. It follows from
the de�nition of the push-forward thatx � G]q� if
and only if x = G(z) where z � q� . While not all
generatorsG will be injective, quality generators are
largely injective over high likelihood image samples. In
the caseh� = G]q� for an injective functionG, the
ELBO and ELBOProxy are equivalent, as shown in the
following proposition:

Proposition 1. SupposeG : Rk ! Rn is an injective
function and letp(xjG) be G]pZ . If h� = G]q� for a
latent variational distributionq� , then

ELBO( G; h� ; y) = ELBOProxy( G; q� ; y) 8y 2 Rm :

Proof. It suf�ces to show

Ex � h � (x ) [ logp(xjG) � logh� (x)]

= Ez� q� (z) [logpZ (zjG) � logq� (z)]

Let JG (z) 2 Rn � k denote the Jacobian ofG at an input
z. SinceG is injective, we can compute the likelihood

of a point in the range ofG [26] via

logp(xjG) = log pZ (G� 1(x)jG)

�
1
2

log j det[JG (G� 1(x))T JG (G� 1(x))] j

whereG� 1 is the inverse ofG on its range. Likewise,
sinceh� is the push-forward ofq� throughG, we can
compute the entropy as

logh� (x) = log q� (G� 1(x))

�
1
2

log j det[JG (G� 1(x))T JG (G� 1(x))] j:

Thus, forx 2 range(G), we have that

logp(xjG) � logh� (x)

= log pZ (G� 1(x)jG) � logq� (G� 1(x)) :

Observe, that forx � h� (x) = G]q� (z), x = G(z) for
somez � q� (z), giving G� 1(x) = G� 1(G(z)) = z.
Thus,

Ex � h � (x ) [logp(xjG) � logh� (x)]

= Ex � h � (x ) [logpZ (G� 1(x)jG) � logq� (G� 1(x))]

= Ez� q� (z) [logpZ (G� 1(G(z)) jG) � logq� (G� 1(G(z)))]

= Ez� q� (z) [logpZ (zjG) � logq� (z)]:

An important consequence of this result is that for
injective generatorsG, the inverse ofG (on its range) is
not required for computing theELBO. In this case, the
ELBOProxy is in fact equivalent to theELBO. In Sec-
tion III-A2 and Figure 2, we experimentally show that
this proxy can aid in selecting potentially non-injective
generative networks from corrupted measurements.

2) Toy example: To illustrate the use of the
ELBOProxy as a model selection criterion, we con-
duct the following experiment that asks whether the
ELBOProxy can identify the best model from a given
set of image generation models. For this experiment, we
use the MNIST dataset [29] and consider two inverse
problems: denoising and phase retrieval. We train a gen-
erative modelGc on each classc 2 f 0; 1; 2; : : : ; 9g using
the clean MNIST images directly. Hence,Gc generates
images from classc via Gc(z) wherez � N (0; I ). Then,
given noisy measurementsyc from a single image from
classc, we ask whether the generative modelGc from the
appropriate class would achieve the bestELBOProxy .
EachGc is the decoder of a VAE with a low-dimensional
latent space, with no architectural constraints to ensure
injectivity. For denoising, our measurements areyc =
xc + � c where � c � N (0; � 2I ) and � =

p
0:5. For

phase retrieval,yc = jF (xc)j+ � c whereF is the Fourier
transform and� c � N (0; � 2I ) with � =

p
0:05.

We construct 10 � 10 arrays for each problem,
where in thei -th row and j -th column, we compute
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the � ELBOProxy obtained by using modelGj � 1

to reconstruct images from classi � 1. We calculate
ELBOProxy( Gc; q� c ; yc) by parameterizingq� c with a
Normalizing Flow and optimizing network weights� c

to maximize (3). The expectation in theELBOProxy is
approximated via Monte Carlo sampling. Results from
the �rst 5 classes are shown in Fig. 2 and the full arrays
are shown in the Supplemental. We note that all of the
correct models are chosen in both denoising and phase
retrieval. We also note some interesting cases where the
ELBOProxy values are similar for certain cases, such
as when recovering the3 or 4 image. For example,
when denoising the4 image, bothG4 and G9 achieve
comparableELBOProxy values. By carefully inspecting
the noisy image of4, one can see that both models are
reasonable given the structure of the noise.

B. Simultaneously solving many inverse problems

As the previous section illustrates, theELBOProxy
provides a good criterion for choosing an appropriate
IGM from noisy measurements. Here, we consider the
task of directly inferring the IGM from a collection
of measurement examplesy( i ) = f ( i ) (x ( i ) ) + � ( i ) for
i 2 [N ], where the parameters are found by optimizing
the ELBOProxy . The key assumption we make is that
common, low-dimensional structure is shared across the
underlying imagesf x ( i ) gN

i =1 . We propose to �nd a
sharedgeneratorG� with weights � along with latent
distributions q� ( i ) that can be used to reconstruct the
full posterior of each imagex ( i ) from its corresponding
measurement exampley( i ) . This approach is illustrated
in Fig. 1. Having the generator be shared across all
images helps capture their common collective structure.
Each forward model corruption, however, likely induces
its own complicated image posteriors. Hence, we assign
each measurement exampley( i ) its own latent distribu-
tion to capture the differences in their posteriors. Note
that because we optimize a proxy of the ELBO, the
inferred distribution may not necessarily be the true
image posterior, but it still captures a distribution of
images that �t to the observed measurements.

a) Inference approach:More explicitly, given a
collection of measurement examplesf y( i ) gN

i =1 , we
jointly infer a generatorG� and a set of variational
distributions f q� ( i ) gN

i =1 by optimizing a Monte Carlo
estimation of theELBOProxy from Equation (3), de-
scribed by:

max
�;� ( i )

1
N

NX

i =1

ELBOProxy( G� ; q� ( i ) ; y( i ) ) + log p(G� ):

(4)

In terms of choices forlogp(G� ), we can add additional
regularization to promote particular properties of the
IGM G� , such as having a small Lipschitz constant.

Fig. 2: We consider two inverse problems: denoising and
phase retrieval. Top: the two topmost rows correspond to
the ground truth imagexc and the noisy measurementsyc .
Center: in each column, we show the means of the distribution
induced by the push-forward ofGj and each latent distribution
z � q� j for j 2 f 0; : : : ; 9g. Bottom: each column of the array
corresponds to the� ELBOProxy achieved by each model
in reconstructing the images. Here, lower is better. Boxes
highlighted in green correspond to the best� ELBOProxy
values in each column. In all these examples, the correct model
was chosen.

Here, we consider having sparse neural network weights
as a form of regularization and use dropout [45] during
training to representlogp(G� ).

Once a generatorG� and variational parameters
� ( i ) have been inferred, we solve thei -th inverse
problem by simply samplinĝx ( i ) = G� (ẑ( i ) ) where
ẑ( i ) � q� ( i ) (z( i ) ) or computing an averagex ( i ) =
1
T

P T
t =1 G� (ẑ( i )

t ). Producing samples for each inverse
problem can help visualize the range of uncertainty
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