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Abstract—We consider solving ill-posed imaging inverse
problems without access to an image prior or ground-
truth examples. An overarching challenge in these inverse
problems is that an infinite number of images, including
many that are implausible, are consistent with the observed
measurements. Thus, image priors are required to reduce
the space of possible solutions to more desireable recon-
structions. However, in many applications it is difficult
or potentially impossible to obtain example images to
construct an image prior. Hence inaccurate priors are often
used, which inevitably result in biased solutions. Rather
than solving an inverse problem using priors that encode
the spatial structure of any one image, we propose to solve
a set of inverse problems jointly by incorporating prior
constraints on the collective structure of the underlying
images. The key assumption of our work is that the
underlying images we aim to reconstruct share common,
low-dimensional structure. We show that such a set of
inverse problems can be solved simultaneously without the
use of a spatial image prior by instead inferring a shared
image generator with a low-dimensional latent space. The
parameters of the generator and latent embeddings are
found by maximizing a proxy for the Evidence Lower
Bound (ELBO). Once identified, the generator and latent
embeddings can be combined to provide reconstructed
images for each inverse problem. The framework we
propose can handle general forward model corruptions,
and we show that measurements derived from only a small
number of ground-truth images (< 150) are sufficient for
“prior-free” image reconstruction. We demonstrate our
approach on a variety of convex and non-convex inverse
problems, ranging from denoising, phase retrieval, and
black hole video reconstruction.

I. INTRODUCTION

In imaging inverse problems, the goal is to recover
the underlying image from corrupted measurements,
where the measurements and image are related via an
understood forward model: y = f(x) + 7. Here, y
are measurements, x is the underlying image, f is a
known forward model, and 7 is noise. Such problems
are ubiquitous and include denoising [6, 17], super-
resolution [7], compressed sensing [8, 16], phase re-
trieval [18], and deconvolution [32]. Due to corruption
by the forward model and noise, these problems are
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often ill-posed: there are many images that are consistent
with the observed measurements, including ones that are
implausible.

To combat the ill-posedness in imaging problems,
solving for an image traditionally requires imposing
additional structural assumptions to reduce the space of
possible solutions. We encode these assumptions in an
image generation model (IGM), whose goal is to capture
the desired properties of an image’s spatial structure.
IGMs are general, as they can encompass probabilistic
spatial-domain priors (e.g., that encourage smoothness
or sparsity), but also deep image generators that are
not necessarily probabilistic but are trained to primarily
sample a certain class of images.

In order to define an IGM, it is necessary to have
knowledge of the underlying image’s structure. If images
similar to the underlying image are available, then an
IGM can be learned directly [41, 52, 4]. However, an
abundance of clean images is not available for many
scientific imaging modalities (e.g., geophysical imaging
and astronomical imaging). Collecting images in these
domains can be extremely invasive, time-consuming,
expensive, or even impossible. For instance, how should
we define an IGM for black hole imaging without having
ever seen a direct image of a black hole or knowing what
one should look like? Moreover, classical approaches
that utilize hand-crafted IGMs, such as total variation
[23] or sparsity in a wavelet basis [34], are prone to
human bias [31].

In this work, we show how one can solve a set
of ill-posed image reconstruction tasks without prior
information about an image’s spatial structure. The key
insight of our work is that knowledge of common struc-
ture across multiple images is sufficient regularization
alone. In particular, we suppose we have access to a
collection of noisy measurements {y®}~ , which are
observed through (potentially different) forward models
y® = fO(2®) 41 The core assumption we make is
that the underlying images {2V}, are drawn from the
same distribution (unknown a priori) and share common,
low-dimensional structure. Thus, our “prior” is not at the



spatial-level, but rather exploits thellective structure 2) We only have access to a collection of measurement
of the underlying images. This assumption is satised in  examples, where each example comes from a dif-
a number of applications where there is not access to an ferent underlying image. The number of examples
abundance of clean images. For instance, although we N is small, e.g.N 6 150

might not know what a black hole looks like, we might 3) For each underlying image(") we wish to recon-
expect it to be similar in appearance over time. We show  struct, we only have access to a single measurement

that under this assumption, the image reconstruction exampley() = f )(x()+ () Thatis, we do not
posteriorsp(xjy‘)) can be learned jointly from a small have multiple observations of the same underlying
number of examplefy()gN, due to the common, image. Note each() can be potentially different.

low-dimensional structure of the collectidix(V g\, .
Speci cally, our main result is that one can capitalize o&. Model selection

this common structure by jointly solving for 1) a shared \;54el selection techniques seek to choose a model

image generatoG and 2)N low-dimensional latent , ¢ pest explains data by balancing performance and

distributions g ), such that the distribution_inducedmodel complexity. In supervised learning problems with
by the push-forward off «) throughG approximately g ciently large amounts of data, this can be achieved

captures the image reconstruction postepiory(") for simply by evaluating the performance of different can-
each measurement exampl@ [N]. didate models using reserved test data [46]. However,
A. Our Contributions in image reconstruction or other inverse problems with
limited data, one cannot afford to hold out data. In
We outline the main contributions of our work, whichthese cases, model selection is commonly conducted
is an extension to our prior work presented in [19]:  ysing probabilistic metrics. The simplest probabilistic
1) We solve a collection of ill-posed inverse problemsetric used for linear model selection is adjustetl R
without prior knowledge of an image's spatial struct37]. It re-weights the goodness-of- t by the number of
ture by exploiting the common, low-dimensionalinear model parameters, helping reject high-dimensional
structure shared across images. This common strygrameters that do not improve the data tting accu-
ture is exploited in inferring a shared IGM with aracy. Similar metrics in nonlinear model selection are
low-dimensional latent space. Bayesian Information Criterion (BIC) [42] and Akaike
2) To infer this IGM, we de ne a loss inspired byInformation Criterion (AIC) [1]. AIC and BIC com-
the evidence lower bound (ELBO). We motivatgpute different weighted summations of a model's log-
this loss by showing how it aids in “prior-free” likelihood and complexity, offering different trade offs
image reconstruction by helping select one IGNpetween bias and variance to identify the best model for
from a collection of candidate IGMs using a singleéd given dataset.
measurement example. In our work, we consider the use of the ELBO as a
3) We apply our approach to convex and non-converodel selection criterion. In [9, 10], the use of the ELBO
inverse problems, such as denoising, black hols a model selection criterion is theoretically analyzed
compressed sensing, and phase retrieval. We estabd rates of convergence for variational posterior estima-
lish that we can solve inverse problems withouion are shown. Additionally, [48] proposes a generalized
spatial-level priors and demonstrate good perforlass of evidence lower bounds leveraging an extension
mance with only a small number of independemf the evidence score. In [47], the ELBO is used for
measurement examples (e.§.,150). model selection to select a few, discrete parameters
4) We theoretically analyze the inferred IGM in lineammodeling a physical system (e.g., parameters that govern
inverse problems under a linear image model tine orbit of an exoplanet). A signi cant difference in our
show that in this setting the inferred IGM performsontext, however, is that we use the ELBO as a model
dimensionality reduction akin to PCA on the col-selection criterion in &igh-dimensionalmaging context
lection of measurements. and we optimize the ELBO over a continuous space of
possible parameters.

Il. BACKGROUND AND RELATED WORK .
B. Learning IGMs

We now discuss related literature in model selection \njith access to a large corpus of example images
and learning-based IGMs. In order to highlight our key g possible to directly learn an IGM to help solve

contributions, we emphasize the following assumptiongyerse problems. Seminal work along these lines uti-
in our framework: lizing generative networks showcased that a pre-trained
1) We do not have access to a set of images from tigenerative adversarial network (GAN) can be used as
same distribution as the underlying images. an IGM in the problem of compressed sensing [4]. To



solve the inverse problem, the GAN was used to cofrom the same limiting distinctions as N2N (i.e., 1), 2),
strain the search space for inversion. This approach wasd 3)).

shown to outperform sparsity-based techniques with Bloise2Void [27] and Noise2Self[3] assume that the
10x fewer measurements. Since then, this idea has bémage can be partitioned such that the measurement
expanded to other inverse problems, including denoisimpise in one subset of the partition is independent
[22], super-resolution [36], magnetic resonance imagirgpnditioned on the measurements in the other subset.
(MRI) [2, 44], and phase retrieval [20, 43]. However, th@his is true for denoising, but not applicable to general
biggest downside to this approach is the requirement of@arward models. For example, in black hole and MRI
large dataset of example images similar to the underlyimgmpressed sensing, it is not true that the measurement
image, which is often dif cult or impossible to obtain innoise can be independently partitioned since each mea-
practice. Hence we consider approaches that are ablestwement is a linear combination of all pixels. While
directly solve inverse problems without example imagethis makes Noise2Void and Noise2Self more restrictive

Recently, methods that learn IGMs from only noisyn the corruptions they can handle compared to RARE,
measurements have been proposed. The main four dfY also don'trequire multiple observations of the same
tinctions between our work and these methods are ti#tderlying image. Hence the main differences between
these works either: 1) require multiple independetf€se works and our own are distinctions 2) and 3).
observations of thesame underlying image, 2) can AmbientGAN [5] and other similar approaches based
only be applied to certain inverse problems, 3) requi®) GANS [25] and VAEs [38, 35] have been proposed
signi cantly more observations (either through mord® léarmn an IGM directly from noisy measurements.
observations of each underlying image or by obserfor instance, AmblentGAN aims to learn a generator
ing more underlying images), or 4) require signi cantvhose images lead to simulated measurements that are

hyperparameter tuning based on knowledge of examrypistinguishable from the observed measurements; this
images. generator can subsequently be used as a prior to solve
Noise2Noise (N2N)[30] leams to denoise images bymverse problems. However, AmbientGAN requires many

L . o measurement examples (on the order of 10,000) to
training on a collection of noisy, independent observa-

. ) r high lit nerator. W rroborate thi
tions of thesameimage. To do so, N2N learns a neuraP _oduce a high quatty generato e comoborate nis
with experiments in Section IV to show that they require

network  whose goal is to map between noisy |magel%any independent observations and/or ne tuning of

y and denoised images. _Smce_ I ha_s_no derwlsedlearning parameters to achieve good performance. Thus,
image examples to supervise training, it instead emplo S main distinctions between AmbientGAN and our
a loss that maps between noisy examples of the same

underlying image. This objective is as follows: Wark are 3) and 4).
ying ge. I ' Deep Image Prior (DIP) [51] uses a convolutional

X ()n. (i) neural network as an implicit “prior”. DIP has shown
argmin - Eiy Eoy ILC 17)y2")l (1) strong performance across a variety of inverse problems
i=1 to perform image reconstruction without explicit prob-
whereyj(i) corresponds to a noisy observation of fhe abilistic priors. However, it is prone to over tting and
th underlying imagex(, andY; is a distribution of requires selecting a specic stopping  criterion. Wh!le
noisy images wher& y , [y] = x. This N2N objective th!s Works_ well Whe_n example_lmages exist, selecting
requires at least two observations of the same image dh#f Stopping condition from noisy measurements alone
is limited by the assumption that the expected value #ttroduces signi cant human bias that can negatively
multiple observations of a single image is the underlyingPact results. Thus, the main distinction between DIP
image. Thus, N2N is only applicable to denoising protnd our work is 4).
lems where the forward model is the identify matrix with [1l. APPROACH
independgnt noise on each pixel. Additio_nally, in practice In this work, we propose to solve a set of inverse
N2N requires thousands of underlying images (i), proplems without prior access to an IGM by assuming
to perform well. Thus, N2N's main distinctions with ourihat the set of underlying images have common, low-
work are distinctions 1), 2), and 3). dimensional structure. We motivate the use of optimizing
Regularization by Artifact Removal (RARE) [33] the ELBO to infer an IGM by showing that it is a
generalizes N2N to perform image reconstruction fromood criterion for generative modaelectionin Sec-
measurements under linear forward models. That is, ttien IlI-A. Then, by optimizing the ELBO, we show
objective in Equation (1) is modi ed to include a pseudoin Section IlI-B that one can directlynfer an IGM
inverse. Nonetheless, multiple observations of the sarfirem corrupted measurements alone by parameterizing
underlying image are required, such tEgty [AYy] = x the image model as a deep generative network with a
for the pseudo-inverse matriky. Thus, RARE suffers low-dimensional latent distribution. The IGM network



Fig. 1: We propose to solve a collection Nf ill-posed inverse problems by exploiting the common, low-dimensional structure

of the underlying images. Given a setMf measurement examplég)gl; from N different underlying images, we propose

to model each image posterior as the output of a shared IGM with a low-dimensional latent space. In particular, each posterior is
approximated bys ]q (i), the push-forward off (i) throughG , whereG is the shared, common generator toMllexamples

andq ¢, is a low-dimensional, variational distribution particular to théa example. The inferred parametersandf (g, ,
are colored in blue and the loss iSELBOProxy , which is given by Equation (4).

weights are shared across all images, capitalizing dme ELBO of an IGMG given measurementg under
the common structure present in the data, while thariational distributiorh is de ned by

parameters of each latent distribution are learned jointly N -

with the generator to model the image posteriors for each ELBO(G:h 5y) = B l(x)[log p(yix; G)
measurement example. +log p(xjG) logh (x)]: (2)

Rearranging the previous equation, we see that by the
non-negativity of the KL-divergence that

In order to accuratelyinfer an IGM, we motivate ey = -
the use of the ELBO as a loss by showing that it '°gP(YIG) = D (h () k plx}y; G))
provides a principled criterion foselectingan IGM +ELBO( G;h 1)
to use as a prior model. Suppose we are given noisy > ELBO(G;h ;y):
measurements from a single image:= f(x) +
In order to reconstruct the image, we traditionally
rst require an IGM G that captures the distribution 10g9p(Gjy) > ELBO(G;h ;y) +log p(G) logp(y):

x was sampled from. A natural approach would be Qe thatlogp(y) is independent of the parameters
nd or select the modelG that maximizes the model ¢ interest, . If the variational distributionh (x)

posterior distributionp(Gjy) / p(yjG)p(G): That is, is a good approximation to the posteriptxjy:G),
conditioned on the noisy measurements, nd the IG 0. Thus, maximizinglogp(Gjy) with re-
of highest likelihood. Unfortunately computing(yjG) spect toG is approximately equivalent to maximizing
is intractable, as it requires marginalizing and integratingLBo(G. h :y)+log p(G)

over all x encompassed by the IGM&. However, we S ;

show that this quantity can be well approximated usin[%in properties of the IGMG. In particular, the rst

the ELBO. term in the ELBO,Ex 1 (x[logp(yjx;G)], requires

To motivate our discussion, we rst consider estimatfhat G should lead to an image estimate that is con-
ing the conditional posteriop(xjy; G) by leaming the gjgtent with our measuremenis The second term,

parameters of a variational distributiom (x). Observe Ex 1 oollogp(xjG)], encourages images sampled from
that the de nition of the KL-divergence followed by an, (x) to have high likelihood under our model. The

application of Bayes' theorem gives nal term is the entropy termE, ([ logh (x)],

A. Motivation for ELBO as a model selection criterion

Thus, we can lower bound the model posterior as

Each term in the ELBO objective encourages cer-

. _ h (x) which encourages & that leads to “fatter” minima that
D (h () kp(xjy; G)) := Ex n (o log p(xjy; G) are less sensitive to small changes in likely images
_ h ()P(yiG) underG.
=B n (v log p(Yix; G)p(XjG) 1) ELBOProxy: Some IGMs are explicit, which al-

- Py : lows for direct computation dbgp(xjG). For example,
Ex n (xllog P_(foyG) +log p(xjG) logh (x)] if our IGM modelsx as isotropic Gaussian with vari-
+log p(yjG): ance , then logp(xjG) / 1kxk3. In this case,



we can optimize the ELBO de ned in Equation (2)of a point in the range o6 [26] via
directly and then perform model selection. However, an S Lron:
important class of IGMs that we are interested in areIOg P(XjG) =log pz (G ~(x)iG)
those given by deep generative networks. Such IGMs }|ogjdet[JG(G YN TIs(G (X))
are not probabilistic in the usual Bayesian interpretation 2

of a prior, but instead implicitly enforce structure in thevhereG * is the inverse ofG on its range. Likewise,
data. A key characteristic of many generative networknceh is the push-forward ofy throughG, we can
architectures (e.g., VAEs and GANSs) that we leverage @g®mpute the entropy as

that thgy generate high—dimen;ional images fr.om Iow—Iogh (x)=log q (G 1(x))

dimensional latent representations. Bottlenecking helps 1

the network learn global characteristics of the underlying ~logjdet[Jc(G *(x))TIc(G *(x)j:
image distribution while also respecting the low intrinsic 2

dimensionality of natural images. However, this meanshus, forx 2 range(G), we have that

that.vx{e can only compuﬂeg_p(ij) .directly if we have logp(xjG) logh (x)

an injective map [26]. This architectural requirement i G 1x)iG) | G 1 )
limits the expressivity of the network. = log pz ( (x)IG)  logq ( (x)):
Observe, that fox  h (x) = Glq (2), x = G(2) for

We instead consider a proxy of the ELBO that i .
q (2), giving G Y(x) = G YG(2)) = z.

especially helpful for deep generative networks. That iS°™M€Z2
suppose our IGM is of the forrt = G(z). Introduc- hus,
ing a variational family for our latent representationg, 0 llogp(xjG) logh (x)]

z g (z2) and choosing a latent prior distribution _ 1ron: 1
logpz (zjG), we arrive at the following proxy of the Ex n oollogpz (G . (X)JG)_ logq (G (Xz)]
ELBO: = E; q (»llogpz (G “(G(2))jG) logq (G “(G(2))]
ELBOProxy(Giq :y) := E; q llogp(yiG(z)) o2 o @[09pz(21G) loga (2)]
+log pz (ziG) logq (2)]: (3) -

In our experiments, we choge (zjG) to be an isotropic _An_important consequence of this res_:ult is tha’F for
Gaussian prior. This is a common choice in man{péctive generator§, the inverse ofs (on its range) is

generative modeling frameworks and has shown to Bt required for computing thELBO. In this case, the

, hi L , id tion 11I-A2 and Figure 2, we experimentally show that
hTO motw:;te this proxy, it ISI qustr%ctw; 10 considelyis proxy can aid in selecting potentially non-injective
,t ethcase V:} fere oudr V?rlatllotnat dI'Sttn'bUI'L' n :h Gla h generative networks from corrupted measurements.
IS the push-lorward of a fatent distributian throug 2) Toy example: To illustrate the use of the
an injective or invertible functiorG. It follows from : o
- .. ELBOProxy as a model selection criterion, we con-
the de nition of the push-forward thax Glg if . .
DO . duct the following experiment that asks whether the
and only if x = G(z) wherez g . While not all ; . .
eneratorsG will be injective, quality generators areELBOPrOXy can identify the best model from a given
g ) » Yy 9 set of image generation models. For this experiment, we

largely |njectE/e over high I|kgl!hoqd image samples. Irﬂjse the MNIST dataset [29] and consider two inverse
the caseh = G]q for an injective functionG, the

ELBO and ELBOProxy are equivalent, as shown in th%roplems: gegoising anhd }:l)hasg ;et'ri(a.\/za.ll'. .\{\{e train agen-
following proposition: €rative model5, on each clase 0;1;2;:::;9gusing
the clean MNIST images directly. Heno8. generates

images from classvia G.(z) wherez N (0O;1). Then,
given noisy measuremenys from a single image from
classc, we ask whether the generative mo@glfrom the
appropriate class would achieve the bE&BOProxy .
ELBO(G;h ;y) = ELBOProxy( G;q ;y) 8y 2 R™:  EachG. is the decoder of a VAE with a low-dimensional

latent space, with no architectural constraints to ensure

Proposition 1. SupposeG : R I R" is an injective
function and letp(xjG) be Glpz. If h = G]gq for a
latent variational distributionq , then

Proof. It suf ces to show injectivity. For denoising, our measuremepts ge=
. .2 — nc
E«  (0[logp(xjG) logh (x)] Xc+ o where o N (0; %) and = 05 For
_ . phase retrievaly. = jF (xc)j+ ¢ whereF,is the Fourier
= Bz q (»[logpz(zIG)  logq (2)] transform and . N (0; 21) with = 0:05.

LetJg(z) 2 R" X denote the Jacobian & at an input ~ We construct10 10 arrays for each problem,
z. SinceG is injective, we can compute the likelihoodwhere in thei-th row andj-th column, we compute



the ELBOProxy obtained by using modelG; ;

to reconstruct images from class 1. We calculate
ELBOProxy( G¢; q .;Yc) by parameterizing) . with a
Normalizing Flow and optimizing network weights.

to maximize (3). The expectation in tiE.BOProxy is
approximated via Monte Carlo sampling. Results from
the rst 5 classes are shown in Fig. 2 and the full arrays
are shown in the Supplemental. We note that all of the
correct models are chosen in both denoising and phase
retrieval. We also note some interesting cases where the
ELBOProxy values are similar for certain cases, such
as when recovering th8 or 4 image. For example,
when denoising thé image, bothG, and Gy achieve
comparabldeeLBOProxy values. By carefully inspecting
the noisy image ofl, one can see that both models are
reasonable given the structure of the noise.

B. Simultaneously solving many inverse problems

As the previous section illustrates, tf#BOProxy
provides a good criterion for choosing an appropriate
IGM from noisy measurements. Here, we consider the
task of directly inferring the IGM from a collection
of measurement examplgd?) = fO(x®)+ O for
i 2 [N], where the parameters are found by optimizing
the ELBOProxy . The key assumption we make is that
common, low-dimensional structure is shared across the
underlying imagesfx(Vg\, . We propose to nd a
sharedgeneratorG with weights along with latent
distributionsq ) that can be used to reconstruct the
full posterior of each imag&(!) from its corresponding
measurement exampig!). This approach is illustrated
in Fig. 1. Having the generator be shared across all
images helps capture their common collective structure.
.EaCh forward .mOdel .Corrumlon’ hpwever, likely mducg"gi . 2: We consider two inverse problems: denoising and
its own complicated image po;terlors. Hence,.we_ ass'gf?ase retrieval. Top: the two topmost rows correspond to
each measurement example) its own latent distribu- the ground truth image. and the noisy measuremenys.
tion to capture the differences in their posteriors. Noteenter: in each column, we show the means of the distribution
that because we optimize a proxy of the ELBO, th#@duced by the push-forward @; and each latent distribution

inferred distribution may not necessarily be the trug 9 forj 2f0;:::;9g. Bottom: each column of the array

. teri but it still i distributi forresponds to the ELBOProxy achieved by each model
Image posterior, but It stll captures a distrioution Of, reconstructing the images. Here, lower is better. Boxes

images that t to the observed measurements. highlighted in green correspond to the besELBOProxy
a) Inference approach:More explicitly, given a values in each column. In all these examples, the correct model

collection of measurement examplds/()g\,, we Wwas chosen.

jointly infer a generatorG and a set of variational

distributionsfq ,gN; by optimizing a Monte Carlo

estimation of theELBOProxy from Equation (3), de- Here, we consider having sparse neural network weights

scribed by: as a form of regularization and use dropout [45] during
LN training to represenbgp(G ).
maxﬁ ELBOProxy(G ;q «);y") +log p(G ): Once a generatolG and variational parameters
D O () have been inferred, we solve theth inverse

(4)  problem by simply sampling® = G (2M) where
In terms of choices fologp(G ), we can add additional 2('|):, q o (zM) or computing an averagg!’) =
regularization to promote particular properties of thé th1 G (zt(')). Producing samples for each inverse
IGM G , such as having a small Lipschitz constanproblem can help visualize the range of uncertainty
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